
 

 

  
Abstract— The paper proposes an architecture for an Intelligent 

System for Disaster Management. It is envisioned as a Multi-Agent 
System. By including a Model Integration component to form a 
hybrid system, it aims to offer support for an as wide as possible 
range of decisions. A final section addresses the dynamical modeling 
of disasters (defined as extreme events), focusing on Boolean Delay 
Equations (BDEs) models and its application in a case study on 
seismic phenomena.  
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I. INTRODUCTION 
ISASTERS management is a combined term 

encompassing all aspects of preparation for and 
responding to disasters, including prevention, mitigation, 
preparedness, response, and recovery [1]. The coordination of 
these emergency operations must be performed by a command 
center which needs to efficiently allocate the available 
resources, communicate information and take decisions 
regarding the planning and execution of the operations. There 
are different Decision Support Systems (DSS) developed for 
various categories of disasters and these systems are based on 
specific models. Due to different decision support needs that 
arise in disaster management area, one single model is not 
sufficient to cope with all of them. The first objective of this 
paper is to present a framework for a hybrid DSS model, 
which integrates different DSS models and propose the 
adaptation to a given scenario. Based on this model, intelligent 
techniques will be used to improve disaster management 
processes such as monitoring, controlling, and decision 
making. Therefore the second objective is to propose the 
architecture of an Intelligent System for Disasters Management 
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(ISDM) able to offer support for various decisions.  

II. MODEL INTEGRATION 
Model integration can be described as a way of developing 

decision models from existing models, by adapting a specific 
paradigm according to a given disaster situation. It produces a 
composite model, developed by merging or combining two or 
more models. To address this problem, we propose a dynamic 
integrated model which is based on a group of subroutines 
selected by an intelligent technique. Such a group, based on a 
specific disaster scenario, can be considered as a dynamic 
integrated model for disaster management decision support 
systems. 

In order to provide effective decision making, modularity 
has been suggested as one of the possible solutions to the 
problems in developing decision support systems for disaster 
management [2]. The design of this system offers a variety of 
technical and theoretical aspects such as modularity and model 
reusability approaches to model decomposition. In order to 
improve this model, we suggest considering the modular 
routines utilized in the integrated DSS model as agents in a 
multi-agent system (MAS). In this new framework, the 
integrated model is realized in three steps:  

1. Selection of the intelligent technique proper for events 
representation 

2. Events correlation  
3. Implementation of a knowledge base with dynamic 

relationships between the subroutines for a particular disaster 
scenario and the subsequent development of the domain base.  

The integrated model will represent from here an Intelligent 
System for Disasters Management (ISDM). 

We consider event correlation to be one of the key 
technologies in recognizing complex multi-source events. The 
task of event correlation can be defined as a conceptual 
interpretation procedure in the sense that a new meaning is 
assigned to a set of events that happen within a predefined 
time interval. The conceptual interpretation procedure could 
stretch from a trivial task of event filtering to perception of 
complex situational patterns. The act of recognition of a new 
situation by the correlation procedure could be formally 
handled as a synthetic event, and as such, it is a subject for 
further correlation. The process of building correlations from 
correlations allows the formation of complex inter-connected 
processes. In Fig. 1 are shown several basic connections 
between different correlation processes, proposed in [3], which 
can be mixed to create a flexible and scalable environment for 
complex situation modeling. 
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Fig. 1. Interconnections between correlation processes (after [3]) 
 
The conventional ISDM practice involves various coupled 

databases, event monitoring and public emergency 
announcement systems. During the last years significant 
progress was made in the development and deployment of 
integrated disaster information monitoring systems, and new 
emerging solutions of cognitive information processing, 
situation management, distributed computing and agent 
technologies has opened opportunities for new architectures 
for ISDMs. 

III. USING A MULTI-AGENT SYSTEM  FOR DISASTERS 
MANAGEMENT 

A. Basic Principles of the Approach 
  The Multi-Agent System (MAS) has been widely recognized 
as an effective solution in modeling large number of dynamic 
interacting entities due to (a) the distributed organization of 
MAS, (b) the use of perceptual and reasoning models of 
mobile intelligent agents, and (c) the natural fit to model 
collaboration between the teams of agents. Such characteristics 
of MAS directly fit the requirements of ISDM. Several 
different architectures of MAS have been proposed, including 
the Belief-Desire-Intention (BDI) agent architecture [4]. Since 
its introduction, the BDI model has experienced several 
functional advancements; however especially for large-scale 
distributed dynamic systems this model presents some 
weakness, namely the lack of an adequate capability to cope 
with complex operational situations [5]. 
  In the case of the proposed ISDM we focus on its cognitive 
aspects that require a cognitive-level MAS that is organized in 
a reactive situation-driven architecture, supports varying 
populations of agents, and scales too many interacting agent 
systems, where each system might have many agents. The 
difference between this new approach and the previous cited 
[3-5] is the use of a specific model of reasoning called case-
oriented reasoning (COR), where each case is a template for a 
generic situation. The library of standard case templates that 
represent typical generic situations allows the construction of 
specific ISDM models by selecting the appropriate case 
templates and modifying (adapting) the selected cases with 
actual parameter values deduced from previous experience. In 
fig. 2 is represented the relation between two main processes 
involved in decision making, one for Situation Recognition 
(SR) enabled by Event Correlation (EC) which operate with 
the Correlation Memory  and the other for Plan Reasoning 
(PR) driven by Case-Oriented Reasoning (COR) which 
operates with the Case Memory. Both processes work in a 

main loop, where the primary situations recognized by EC 
might be refined and combined by the COR and EC might get 
context-sensitive meta-situations in order to proceed with the 
event correlation process. In case of incomplete information, 
EC might pass queries to event collection procedures for 
additional information. A secondary loop appears in the PR 
process, where sections of a plan can trigger an iterative 
deliberation process. 
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Fig. 2. Reactive relations in the decision making process 
 
  One can consider the structure in fig.2 as a situation-aware 
agent for Disaster Situation Management (DSM). One of the 
important aspects of using MAS for DSM is that the concept 
of an agent takes two embodiments: the physical embodiment 
of material resources and the virtual embodiment of software 
agents. Consequently, the DSM environment allows mapping 
the physical agents (vehicles, robots, human teams, etc.) into 
the abstract framework of MAS. This task involves several 
engineering considerations, including energy consumption, 
relative autonomy of physical agents, information sharing, 
security, etc. In particular, this architecture allows the 
application of the Event-Situation-Plan (ESP) paradigm, which 
drives invocation of a plan in a Belief-Desire-Intension (BDI) 
model [6]. 
 

B. BDI agent architecture 
  The Belief-Desire-Intension (BDI) model was conceived 

as a relatively simple rational model of human cognition. It 
operates with three main mental attitudes: beliefs, desires and 
intentions, assuming that human cognitive behavior is 
motivated by achieving desires (goals) via intentions providing 
the truthfulness of the beliefs [7].    
  Beliefs are the knowledge about the managed operational 
space (the World) that the agent possesses and believes to be 
true. Beliefs could be specifications of the World entities, their 
attributes, relations between entities, and states of the entities, 
relations. In many cases, the agent’s beliefs include the 
knowledge about other agents as well as models of itself. 
  Desires are agent’s motivations for actions. Two kinds of 
activities are associated with the desires: (a) to achieve a 
desire, or (b) prove a desire. In the first case, by applying a 
sequence of actions the agent wants to reach a state of the 
World, where the corresponding desire formula becomes true, 
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while in the second case, the agent wants to prove that the 
World is or isn’t in a particular state by proving that the 
corresponding belief formula is true or not. Often desires are 
called goals or tasks. 
  Plans are operational specifications for an agent to act. An 
agent’s plan is invoked by a trigger event (acquisition of a new 
belief, removal of a belief, receipt of a message, and 
acquisition of a new goal). When invoking a plan, an agent 
tests whether the plan invocation preconditions are met, and 
tests run-time conditions during the plan execution. Actions 
could be external ones, essentially procedure calls or method 
invocations, or internal ones of adding and removing of 
beliefs. Abstract plans are stored in the agent’s plan library. 
  Intentions are sequences of instantiated plans that an agent is 
committed to execute. Always while responding to a triggering 
external event, an agent is invoking a plan from the plan 
library, instantiating it and pushing into a newly created stack 
of intentions. Contrary to that, when an agent responds to an 
internal triggering event, i.e., an event created by an internal 
action of some previous plan instance, then the new plan 
instance is pushed onto the stack of the previous plan that 
caused the invocation of the new plan instance.  
The architecture of a BDI agent is presented in Figure 3. 
 

 
Fig. 3. Architecture of a Situation – Aware BDI Agent 
 

IV. ISDM CONCEPT AND DESIGN  

A. Main Tasks of ISDM 
  The major activities with decision-making needs (shown 
inside brackets) in disaster management are as follows: 

• Hazard assessment (vulnerability analysis, frequency of 
hazard occurrences) 

• Risk management (analysis of disaster risks, evaluating 
risks and treating risks) 

• Mitigation (developing mitigation plan, analysis of 
measures) 

•  Preparedness (planning and resource management) 
• Response (emergency response plans, analysis and 

evaluation) 
•  Recovery (assessments, re-settlement issues) 

  In order to offer the possibility to combine and adapt 
different strategies, we decided to build our Intelligent System 
for Disaster Management (ISDM) using a Decision Support 
System (DSS) able to help decision-makers by cooperative 
work of several intelligent agents, included in a multi-agent 
structure.  Multi-agent systems are ideally suited to 
representing problems that have multiple problem solving 
methods and multiple perspectives. Intelligent agents take 
initiative where appropriate, and socially interact, where 
appropriate, with other artificial agents and humans in order to 
complete their own problem solving and to help others with 
their activities. 
  The most important responsibilities of the agents involved in 
Decision Support for disaster management usually are: 

• Monitoring: observe the environment and detect 
problematic behaviors; 

• Alarm generation: raise alarms if there is a critical 
situation; 

• Warning: warning respecting undesired consequences of 
“bad” actions and potentially suggesting better ones.  
  The specific tasks for the implementation of the above 
mentioned activities must be carefully designed. In 
methodologies that go back to the knowledge engineering 
field, a task is usually conceived as an abstract description of 
how the world (or an agent’s “mental model” of it) needs to be 
transformed in order to achieve a desired behavior or 
functionality. To generate answers for the different classes of 
actions in our management framework, we have identified four 
essential tasks: 

• Problem identification: From the analysis of the 
information received from a communication infrastructure or 
directly from the operator, the classifier chooses the state of 
the monitored system; 

• Diagnosis: The presence of unacceptable events or 
situations requires an explanation in terms of causal features of 
the situation. 

• Action planning: Once a problem has been identified, a 
possible sequence of actions applicable on the causes may be 
established. 

• Prediction: The consequences of events and operator 
actions are simulated. 
   Let us consider a set of system components S, a set of 
external events E and a set of operator actions A. 
By combining the above tasks in different manners, several 
questions that a decision maker typically faces can be 
answered. For instance: 
 “What is happening in S?” represents: problem identification 
+ diagnosis.  
A diagnosis D for some potential malfunction is produced: 
“What to do on D in S?”  represents: action planning + 
prediction 
Decision options are shaped and their potential effects 
evaluated: 
“What may happen if E in S?” represents: prediction + 
problem identification + diagnosis 
Potential future problems in evolution of the system are 
identified: 
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“What to do if E in S?” represents: prediction + problem 
identification + diagnosis + planning. 
  A common way of dealing with these issues it to conceive the 
ISDM itself as a multi-agent system, where each distributed 
entity is controlled by an agent. Hence, any of the 
aforementioned tasks of problem identification, diagnosis, 
action planning and prediction can be performed locally by 
each agent within the multi-agent system. These local tasks 
will be of less complexity, but they are also interdependent.  
The co-ordination task that such a multi-agent system faces, 
refers to the management of these dependencies between local 
tasks. 

B. Specific Methods for ISDM 
  Most knowledge-oriented methodologies make use of the 
concept of problem-solving methods in order to cope with 
tasks. In particular, such methods indicate how a task is 
achieved, by describing the different steps by which its inputs 
are transformed into its outputs. The problem-solving process 
associated to a task is structured as follows: each of its steps 
may set up several subtasks, which again are to be solved by 
simpler methods and so on, until some elementary tasks can be 
achieved directly. 
  Problem identification methods 
  A classification method with two options may be applied: 

•  Identification of a reference situation and classification of 
the differences between the reference and the current situation. 

• Direct classification of the current situation based on a 
predefined taxonomy where problems of different types are 
described. 
  The first approach requires: (1) to infer from the current 
situation the evolution of parameters consistent with the 
functional and structural constraints which optimizes a 
collection of predefined criteria and (2) to classify the 
differences between the observed situation and the resulting 
class of situations according to a hierarchy similar to the one 
previously commented. 
  For the first subtask, the method is applied in two steps. The 
first step derives a possible new state from the current situation 
that may be supported by an ad hoc procedure, adapted to the 
characteristics of the domain model. For the second subtask a 
primary representation based on rules and/or frames may be 
applied in a hierarchical establish & refine model. The second 
approach is similar to the first one, but in this case a complete 
description of the situation is required, not only the differences 
with the reference situation. 
  Diagnosis methods 
  This task infers a collection of causes explaining the 
problems identified by the previous one. Several methods may 
be directly applied:  

(1) The classification method, which extends problem type 
frames by additional cause attributes in such a way that once a 
problem pattern has been selected, the cause features assumed 
for this problem type are assumed.  

(2) A version of the cover & differentiate method [8] where 
a hierarchical approach to an explanatory set of causes is 
generated through the following reasoning steps: (i) from the 
attributes of the type of problem detected a collection of 
possible causes may be inferred covering these values; (ii) 

since this first set of causes may be too large, a deeper analysis 
to differentiate subsets explanatory enough is necessary. 
  Action planning methods 
  After the problem identification and diagnosis tasks, some 
scenarios of causes of problems have been deduced together 
with its impacts. The action planning task must generate a 
consistent set of actions oriented toward the reduction or 
elimination of causes and/or toward the reduction of impact 
damages where no possible cause reduction may be produced. 
Specifying this task in a general way requires defining the 
elementary actions that will be the basis for definition of 
acceptable decision plans together with their models [9]. 
  Behavior prediction methods 
  This task has as main goal to propose scenarios of short-term 
future behavior of the different components of the model. 
There may be specific simulation methods performing this 
type of task. A library could be considered to support a class 
of applications including a collection of typical physical 
components. The model of reasoning may take the current 
state from the information system and the assumptions about 
the external actions and match it with some node in the graph 
[10]. As a result, for every matched situation the predictable 
short-term changes are described by the downstream 
connected states. 
  Coordination methods 
  Coordination is best conceived of as the management of 
dependencies between activities. Methods that perform this 
type of management usually comprise three steps: 

• Dependency detection: using domain knowledge about the 
different dependencies that may occur (producer-consumer 
relationships, resource limitations etc.) positive and negative 
relationships between the different local tasks of the agents are 
detected.  

• Option generation: for every dependency, the set of 
possible management actions is generated.  

• Management decision: finally, a decision must be taken 
respecting the dependency management action to be applied. 

V. SYSTEM  ARCHITECTURE 
  In a well-known publication [11], Meystel and Albus 
stipulate that any intelligent system consists of two parts: 

1. Internal, or computational, which can be decomposed into 
four internal subsystems of intelligence as follows: 

a) Sensor processing - inputs are provided to an intelligent 
system via sensors and are processed to create a consistent 
state of the world. Sensors are used to monitor the state of the 
external world and the intelligent system itself. 

b) World modeling - is the estimation of the state of the 
world; it includes knowledge databases about the world and 
contains a simulation module that provides information about 
future states of the world. 

c) Behavior generation – is the decision making module that 
selects goals and plans, and executes tasks. 

d) Value judgment – it evaluates both the observed state and 
predicted state; it provides the basis for decision making. 

2. External, or interfacing; input and output from the internal 
part of the intelligent systems are generalized via sensors and 
actuators that can be considered external parts. 
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  We adapted the system architecture referenced in [11] which 
is based on the real control system techniques. Figure 4 shows 
the basic components of the ISDM. 
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Agent

Agent 
Decisions

 
Figure 4. Block scheme of ISDM 
 
   The general diagram in Fig. 5 is constructed in concordance 
with the principles of a multi-agent system organization. 
Software agents are computational units that are repeated 
many times within an intelligent system at many different 
levels as the units of information in all of the subsystems are 
aggregated into entities, events, situations, and goals are 
decomposed into sub-goal tasks and generate actions or 
commands. Within each loop, data processing maintains a 
knowledge database with a characteristic range and resolution. 
At each level, plans are made and updated with different 
planning horizons. At each level, short term memory traces 
sensory data over different historical intervals. At each level, 
feedback control loops have a characteristic. This model of a 
multi-resolution hierarchy of computational loops ushers deep 
insights into the phenomena of behavior, perception, 
cognition, problem solving and learning. 
  The architecture of an intelligent system is a specific 
framework of agents and each agent has its own architecture. 
In the core of any intelligent system, there is also the concept 
of a generalized agent. Agents with similar functions can be 
gradually lumped in a group type agent, which basically is a 
generalized agent. The group agent gives a new world 
representation in terms of granularity or resolution. 
Furthermore, group agents can be aggregated into an even 
more generalized agent, in a hierarchical structure.  
  The proposed architecture includes elements of intelligence 
to create functional relationships and information flows 
between different subsystems. The elements of intelligence are 
based on components using one or more AI techniques: natural 
language processing, artificial neural networks, fuzzy logic, 
cellular automata (in particular Boolean Networks for solving 
Boolean Delay Equations - BDE). The following section of the 
paper is dedicated to the use of BDE models. 
  Figure 5 depicts the proposed architecture of the intelligent 
assistance system, based on the integration of traditional 
statistical methods and various AI techniques to support a 
general system that operates automatically, adaptively, and 
proactively. 
 

Statistical 
Model

BDE
ModelKnowledge
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User 
Feedback

Prediction
Model

 
Figure 5. Intelligent model components 
 
  The system’s architecture is based on a hybrid approach that 
yields both the robustness and depth of understanding of 
decision making using intelligent models. This system aims to 
improve monitoring and decision making processes with an 
effect size that is higher than a human expert. In addition, this 
system provides mechanisms to enhance the active 
construction of knowledge about threats, policies, procedures, 
and risks. The model is adaptive and supports processing and 
classification of events and data that leads to the prediction of 
anomalies or even extreme events. One major component in 
design is the development of an intelligent model for the 
analysis and correlation of events and data in real-time to 
increase the detection and prevention capabilities. The hybrid 
system is an integration of different models for the disaster and 
extreme events management to include AI techniques and 
other methods based on statistical and traditional procedural 
approach. The basic idea of the multiple models is to 
independently perform different functions with different 
measures, and to complement the weaknesses of one model 
with the strengths of another model.  
  Furthermore, the ISDM can interpret the data for human. 
Because the outputs of the models are uncertain and imprecise 
in some situation, and because human experts may have some 
intuition or additional knowledge on the characteristics of the 
presented information, ISDM could interpret the outcomes of 
other models in a form that humans relate better to. The system 
should include functions for the automation of tasks such as 
data collection, data reduction, filtering, and event correlation 
based on multi-agent technologies. The system may generate 
commands to end processes or move the processing to another 
device when signs of suspicious behavior or failures are 
detected. 
   In addition, our system is an intelligent assistant to provide 
feedback to the user such as help on making decisions and 
taking actions. The system includes a user interface based on 
multimedia for supporting network administrator’s operations, 
and a knowledge base for maintaining trustworthiness as 
systems change and adapt. This knowledge base must be 
adaptive and shared via the network. The validation of the 
computer generated decisions can be performed by comparing 
with the decisions of experts. The user feedback module 
provides different feedback to a network administrator. The 
type of feedback available is important. Direct feedback 
entails specific information about the results and impact of 
each possible feedback. Indirect feedback is situated on a 
higher level, with no specific information about individual 
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change or predictions but rather proposing new strategies and 
systemic changes.  

An important issue is to maintain the functionality of the 
system in situation of risk and hazards, so to provide the 
management of uncertainties to ensure improved design, 
robust operation, accountable performance and responsive risk 
control. Therefore, ISDM can provide the ability to adaptively 
assign emergency-role and permissions to specific subjects and 
inform subjects without explicit access requests to handle 
emergency situations in a proactive manner. In this aim  the 
concepts of emergency-group and emergency dependency [12] 
were introduced. Emergencies are processed in sequence 
within the group and in parallel among groups.  

VI. BOOLEAN DELAY EQUATIONS FOR DYNAMIC MODELING 

A. Theoretical background 
  Boolean delay equations (BDEs) are a modeling framework 
especially tailored for the mathematical formulation of 
conceptual models of systems that exhibit threshold behavior, 
multiple feedbacks and distinct time delays [13]. BDEs are 
intended as a heuristic first step on the way to understanding 
problems too complex to model using systems of partial 
differential equations at the present time. BDEs may be 
classified as semi-discrete dynamical systems, where the 
variables are discrete — typically Boolean, i.e. taking the 
values 0 (“off”) or 1 (“on”) only — while time is allowed to be 
continuous. Systems in which both variables and time are 
continuous are called flows. Vector fields, ordinary and partial 
differential equations (ODEs and PDEs), functional and delay-
differential equations (FDEs and DDEs) and stochastic 
differential equations (SDEs) belong to this category. Systems 
with continuous variables and discrete time  are known as 
maps and include diffeomorphisms, as well as ordinary and 
partial difference equations. In automata both the time and the 
variables are discrete; cellular automata (CAs) and all Turing 
machines (including real-world computers) are part of this 
group. These kind of BDE are used in our approach and are 
described with the following general form. 
Given a system with n continuous real-valued state variables 

n
n Rvvvv ∈= ),...,,( 21

  for which natural thresholds 

Rqi ∈ exist, one can associate with each variable Rvi ∈ a 
Boolean variable, Bxi ∈  = {0, 1}, i.e., a variable that is either 
“on” or “off,” by letting 

ni
qv
qv

x
ii

ii
i ,...,1,

,1
,0

=




>
≤

=
         (3.1) 

The equations that describe the evolution of the Boolean 
vector n

n Bxxxx ∈= ),...,,( 21
 due to the time-delayed 

interactions between the Boolean variables Bxi ∈  are of the 
form: 

)(),...,(),(( ,2,21,1 niniiii txtxtxfx θθθ −−−=
 

The functions fi : Bn →B, 1 ≤ i ≤ n, are defined via Boolean 
equations that involve logical operators and delays. Each delay 
value θi,j∈R, where 1 ≤ i, j ≤ n, is the length of time it takes 

for a change in variable xj to affect the variable xi. Fig. 6 
presents the time diagram of a system described by a two 
dimensional Boolean vector , 10;, 2

21 ≤<∈ θBxx  with: 





−=
=−=
)1()(

2/1),()(

12

21

txtx
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Fig.6. Time diagram of a bi-dimensional BDE system 
 
The basic theoretical results from BDE theory appears in Ghil 
and Mullhaupt [14]. They classified BDE systems as follows: 
all systems with solutions that are immediately periodic for all 
rational delays are conservative, while systems that for some 
rational delays exhibit transient behavior before settling into 
eventual periodicity are dissipative. The differential dynamical 
systems analogs are conservative (e.g., Hamiltonian) 
dynamical systems versus forced-dissipative systems. For 
example, a system described by the equation model 

)1()( −= txtx is conservative, while if the model is 
)()1()( θ−∧−= txtxtx is dissipative.  Another characteristics 

of  BDEs system is the asymptotic behavior. The following 
types of asymptotic behavior were observed in BDE systems: 
(a) fixed point — the solution reaches one of a finite number 
of possible states and remains there; (b) limit cycle — the 
solution becomes periodic after a finite time elapses; and (c) 
growing complexity — certain classes of BDEs with 
incommensurable delays were shown to have solutions with 
growing complexity, as measured by the number of jumps per 
unit time. This number grows like a positive, but fractional 
power of time t, with superimposed log-periodic oscillations.  

B. A BDE Model for Seismicity 
  Lattice models of systems of interacting elements are widely 
applied for modeling seismicity, starting from the pioneering 
work of Allegre et al. [15]. The state of the art is well 
summarized in [16], which also refers to the colliding cascade 
models, able to reproduce a wide set of observed 
characteristics of earthquake: (i) the seismic cycle; (ii) 
intermittency in the seismic regime; (iii) the size distribution of 
earthquakes; (iv) long-range correlations in earthquake 
occurrence; (v) a variety of seismicity patterns premonitory to 
a strong earthquake. Colliding cascade models [17] synthesize 
three phenomena that play an important role in many complex 
systems: (i) the system has a hierarchical structure; (ii) the 
system is continuously loaded (or driven) by external sources; 
and (iii) the elements of the system fail (break down) under the 
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load, causing redistribution of the load and strength throughout 
the system. Eventually the failed elements heal, thereby 
ensuring the continuous operation of the system. The load is 
applied at the top of the hierarchy and transferred downwards, 
thus forming a direct cascade of loading. Failures are initiated 
at the lowest level of the hierarchy, and gradually propagate 
upwards, thereby forming an inverse cascade of failures, which 
is followed by healing. The interaction of direct and inverse 
cascades establishes the dynamics of the system: loading 
triggers the failures, and failures redistribute and release the 
load. In its applications to seismicity, the model’s hierarchical 
structure represents a fault network, loading imitates the effect 
of tectonic forces, and failures imitate earthquakes. 
Our BDE model is similar with the model discussed in [16], a 
ternary tree where each element is connected to and interacts 
with its six nearest neighbors: the parent, two siblings, and 
three children (see fig. 7).  At each epoch a given element may 
be either intact or failed (broken), and either loaded or 
unloaded. The state of an element e at a moment n is thus 
defined by two Boolean functions se(n) ={0(intact) or  
1(failed)} and le(n) ={0(unloaded) or 1(loaded)}. An element 
of the system may switch from one state to another under an 
impact from its nearest neighbors and external sources. 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. A BDE ternary tree model for seismicity 
 
The dynamics of the system is controlled by the time delays 
between the given impact and switching to another state. At 
the start, t = 0, all elements are in the state (0, 0), intact and 
unloaded. Most of the changes in the state of an element occur 
in the following cycle: (0, 0) → (0, 1) → (1, 1) → (1, 0) … . 
The duration of each particular delay, from one switch of an 
element’s state to the next, is determined from four basic 
delays, depending on the state of the element as well as of its 
nearest neighbors during the preceding time interval. The two 
primary delays are the loading time ΔL necessary for an 
unloaded element to become loaded under the impact of its 
parent, and the healing time ΔH necessary for a broken element 
to recover. Failures are initiated randomly within the elements 
at the lowest level. The other two basic delays are ΔF , between 
the increase in weakness and switching to the failed state and 
ΔD, between failure and switching to the unloaded state.  
The model is forced and dissipative, if we associate the 
loading with an energy influx. The energy dissipates only at 
the lowest level, where it is transferred downwards, out of the 

model. In any part of the model not including the lowest level 
energy conservation holds, but only after averaging over 
sufficiently large time intervals. On small intervals it may not 
hold, due to the discrete time delays involved in energy 
transfer. The output of the model is a catalog of failures of the 
elements of an earthquake, similar to the simplest routine 
catalogs of observed earthquakes: 

C = (tk, mk, hk), k = 1, 2, . . . ; tk ≤ tk+1.      (3.2.) 
where tk is the starting time of the rupture; mk is the magnitude, 
a logarithmic measure of energy released by the earthquake 
and hk is the vector that comprises the coordinates of the 
hypocenter (i.e. the point of the area where the rupture 
started). 
The quantitative description of model earthquake sequences is 
given by two measures: the density ρ(n) of the elements that 
are in a failed state at the moment n and the irregularity G(I) of 
energy release over the time interval I.  
If we consider νi(n) is the fraction of failed elements at the i-th 
level of the hierarchy at the moment n and m the depth of the 
tree, then  

ρ(n) = [ν1(n) + . . . + νm(n)]/m         (3.3) 
and can be denoted by ρ(I) – the measure averaged over a time 
interval I. 
  At its turn, G can be calculated as the average sum of the 
energy developed in a set of nonoverlapping intervals NI, such 
that |I|=δ NI where |.| denotes the length of the interval. 
Nonetheless, G has a transparent intuitive interpretation: it 
equals unity for a catalog consisting of a single event (burst of 
energy) and it is zero for a marked Poisson process (uniform 
energy release). Generally, it takes values between 0 and 1 
depending on the irregularity of the observed energy release. 
The model produces synthetic sequences that can be divided 
into three seismic regimes, denoted H, I and L. Regime H 
corresponds to high and nearly periodic seismicity, when the 
fractures within each cycle always reach the top level. Regime 
I exhibits intermittent seismicity (the seismicity reaches the top 
level for some but not all cycles). Regime L is characterized by 
low seismicity (no cycle reaches the top level and seismic 
activity is much more constant).  
  This BDE model was utilized in a case study on the seismic 
events in the Vrancea region of Romania [18]. The aim of this 
study was to decide on the basis of the behavior of the seismic 
activity prior to t, whether a strong earthquake will or will not 
occur in a specified region during a subsequent interval          
(t; t+Δt). We used an algorithm derived from the intermediate-
range earthquake prediction algorithm M8 of Keilis-Borok and 
Kossobokov [19] which allows to combine BDE model with a 
model build on the principles of the Extreme Values Theory 
(EVT). EVT provides a solid probabilistic foundation [20] for 
studying the distribution of extreme events in many fields of 
applications. Probabilistic EVT theory is based on asymptotic 
arguments for sequences of independent and identically 
distributed (i.i.d.) random variables; it provides information 
about the distribution of the maximum value of such an i.i.d. 
sample as the sample size increases. 
  The data set on seismic activity in the Vrancea region was 
taken from the RomPlus earthquake catalogue compiled at the 
National Institute of Earth Physics (Caldarusani, Romania). 
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Only strong earthquakes, with magnitude M ≥M0, were 
considered extreme events of interest Three values have been 
chosen for the magnitude threshold of strong earthquakes (M0): 
6.0, 6.5 and 7.0 and we have specified a threshold ΔM = 0.5 
for all these values because the M8 algorithm focuses 
specifically on earthquakes in a range M0 ≤ M <  M0 + ΔM 
with given ΔM. The combined model allows to test an  
earthquake prediction method designed by the retrospective 
analysis of the dynamics associated with seismic activity 
starting from 1960 (i.e. the last 50 years). 
 

VII. CONCLUSION 
 
  Disaster management is characterized by large volumes of 
real-time events and complex domain models which require a 
combination of data fusion, event correlation and semantic 
reasoning in order to identify and assess the current context 
and recommend actions. Such application domains include 
preparedness, disaster recovery and risk reduction 
management. Due to the highly distributed and 
multidisciplinary nature of these applications, MAS is a 
convenient development model. From a system design 
perspective, the data fusion, event correlation and situation 
management technologies offer significant scalability for real-
time event processing and state analysis. In addition, the large 
scale of these application domains suggests that multiple agent 
platforms will have to cooperate. 
    One can conclude that because of the complexity of 
information management tasks, the proposed system is based 
on the integration of different types of intelligent agents, i.e. a 
hybrid architecture under real-time constraints. We have 
demonstrated the model integration technique using the 
concepts of relational theory. We have argued the need for 
model integration in the area of disaster management and 
usefulness of model integration techniques. We have also 
elaborated the usefulness of intelligent agent technology for 
model selection and stated the actions that an agent can 
perform while selecting the model from the model base. 
  Advanced real-time techniques based on modeling, sensor 
analysis, and intelligent agents integrated with traditional 
procedural and statistical methods can recognize, filter, and 
correlate events and data collected by various sensors and 
sources. These techniques support the capability to provide 
automated feedback to correct the problems including useful 
advice to a human to take actions and prevent ongoing attacks. 
That means that the ISDM can be considered a cyber-physical 
system which ensures  a Cognition-Adaptive Human–
Computer Interface for any type of mission-critical systems, in 
particular for disasters management.  
    The key question for the description, understanding and 
prediction of extreme events is if one can extrapolate 
knowledge on the numerous small ones phenomena to 
characterize the few large ones. This approach allows one to 
jump from the description of the many to the prediction of the 
few. Such systems are better known than others, and can be 
modeled by using fairly sophisticated tools, like sets of 
differential equations and other modeling frameworks, whether 

deterministic, stochastic or both. In our research we choose to 
explore “partial BDEs” in which the number of Boolean 
variables is quite large. These systems stand in the same 
relation to “ordinary BDEs,” explored so far. It would appear 
that BDEs are well suited for the exploration of poorly 
understood phenomena and extreme events occurrence in the 
natural world. Moreover, the robustness of fairly regular 
solutions in a wide class of BDEs, for many sets of delays and 
a variety of initial states, suggests interesting applications to 
certain issues in massively parallel computations. 

Our research based on cognitive load measurement (the BDI 
approach) has yielded promising outcome and validated the 
feasibility of ISDM. We proposed a novel architecture of an 
intelligent system for disaster and extreme events management. 
The proposed architecture is based on multidisciplinary 
paradigm which includes information management, network 
communications, process control, computer science, artificial 
intelligence, modern control theory, statistics, management 
science, risk analysis. No single approach can resolve the 
growth and increased sophistication of such a system. We need 
to apply several paradigms to meet the objectives of 
information management for the modern organization of the 
21st century. Intelligent agent technology offer additional 
facilities.  The system has to be adaptive and capable of 
discovering and building new knowledge for the information 
domain. Future work should seek a systematic proof-of-
concept that integrates all modules to support any situation of 
disaster management. At the moment, we are working on the 
improvement of the software architecture and the development 
of other key modules. 
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